Where do Drug Molecules go Inside of Cells?

A New Method to Probe the Composition of Cellular Organelles

Ashley Ellsworth
Physical Electronics, USA.
Collaborators

Physical Electronics,
University of Illinois at Urbana-Champaign,
& Colorado State University

Dr. Greg Fisher
Prof. Mary Kraft
Corryn E. (Neumann) Chini
Prof. Michael Tamkun
Ben Johnson
MS 2D Mapping of Lipids & Sterols on MDCK Cell

Are the cholesterol-rich regions part of the endoplasmic reticulum, or an organelle involved in cholesterol synthesis and transport??

Identifying specific cellular compartments or structures by MS imaging isn’t easy!!
Can we repurpose the ER-Tracker stain for imaging of the endoplasmic reticulum by MSI?

HEK-293 cells were transfected and then stained using the ER-Tracker, and then fixed for analysis.
The arrows indicate coincidence of the Kv2.1 ion channels and the ER tubules in the stained HEK cells.

The ER tubules measure approximately 0.3 to 2.0 microns in diameter.
MS imaging & tandem MS imaging of HEK cells was performed using a PHI *nanoTOF II* TOF-SIMS Parallel Imaging MS/MS instrument.

3D MS1 / MS2 Imaging

- **Analysis beam**
 - 30 keV Bi$_3^+$, unbunched
 - 3.0 nA, 1.16×10^{13} ions/cm2
 - 80 nm beam, 137 nm/pixel

- **DC sputter beam**
 - 5 keV Ar$_{2,500}^+$, 6.0 nA,
 - 8.06×10^{14} ions/cm2 (total)

Potential MS\(^1\) Observation of ER Tubules

No molecular ion signals (i.e. \(\pm m/z\) 580) of the ER-Tracker stain were observed.

100 \(\mu m\); 5 min.

70 \(\mu m\); 8 min.

Si\(^+\) (\(m/z\) 28); \(C_5H_{15}NPO_4^+\) (\(m/z\) 184)

ER Tracker fluorescent stain

SiO\(_3\)H\(^-\) (\(m/z\) 77)

F\(^-\) (\(m/z\) 19)

-\(m/z\) 167
In the standard TOF-SIMS operation mode, all ions are collected at the MS1 detector.
In MS/MS mode, the precursor ion is deflected into the collision induced dissociation (CID) cell. The resulting fragment ion spectrum is collected with the MS2 detector while the rest of the ions are collected as usual with the MS1 detector.
Total Area Tandem MS in Transfected & Stained Cells

MS² spectra reveal exogenous F⁻ in the ER-Tracker-stained cells, potentially from C₆F₅⁻ ions.

MS² (-SIMS, m/z 12 – 171)

MS² (-SIMS, m/z 13 – 60)

The F⁻ in the MS² ROI spectrum indicates localization of a fragment of the ER-Tracker.

The relative counts of F⁻ ions are elevated in the ROI product ion (MS²) spectrum; potentially, the F⁻ ions arise from a pentafluorophenyl anion.
The relative counts of F^- ions are elevated in the ROI product ion (MS2) spectrum; potentially, the F^- ions arise from a pentafluorophenyl anion.
Spectra of the ER-Tracker Reference

No molecular ion observed; MS2 of -m/z 167 confirms a C$_6$F$_5^-$ composition.
Are ER Features Observed in Unstained Control Cells?

Possible ER tubules and ER-PM junctions are observed in stained cells as noted by localization and correspondence of the F⁻ and C₆F₅⁻ ions.

The F⁻ and C₆F₅⁻ chemical signatures are not observed in the control cells.
The product ion spectra show no evidence of the pentafluorophenyl anion.

MS² (-SIMS, m/z 12 – 171)

MS² (-SIMS, m/z 13 – 60)

No F⁻ ions!
ER Tubules Observed in Both Ion Polarities

What is the source of the $C_5H_5^+$ ions?

- SIMS; 70 µm; 8 min.
+ SIMS; 70 µm; 16 min.

$F^- (m/z 19)$

$C_5H_5^+ (m/z 65)$ binned
Spectra of the ER-Tracker Reference

MS1 reveals the [M]$^+$ and a fragment at m/z 263; MS2 of [M]$^+$ reveals a product ion at m/z 262.
Spectra of the ER-Tracker Reference

MS² confirms m/z 263 is the [M*+H]⁺ of the dapoxyl dye fragment and gives rise to C₅H₅⁺ ions.
3D Tandem MS Imaging of Transfected/Stained HEK Cell

A 50 μm x 30 μm x 40 nm volume revealing the ER tubules and ER-PM junctions in one cell.
Summary & Outlook

- Organelles must be “labeled” in order to achieve definitive localization of chemistry by MSI.

- We employed a combination of staining (ER-Tracker) and tandem MS imaging to directly observe ER tubules and ER-PM junctions in transfected HEK cells.
 - High resolving power TOF-SIMS (MS\(^1\)) imaging & tandem MS (MS\(^2\)) imaging at \(\Delta l \approx 100\) nm.
 - Simultaneous collection of MS\(^1\) and MS\(^2\) data from each pixel enhances molecular ID and imaging.
 - The same method can be applied to MS imaging of other organelles and cellular structures.

- Full 3D MS\(^1\) / MS\(^2\) imaging of the ER in the entire cell volume is underway.

- We further aim to identify organelle-specific lipids and differentiate them from e.g. PM lipids.

- By extension, it should be possible to identify the location of drugs and metabolites in cells.
Tandem MS (MS²) Spectrometer Schematic

3 keV Secondary Ions

Precursor Selector

CID Cell

1.5 keV Product Ions

Bunching & Post-Acceleration

15 kV Drift Space

MS2 Detector

Toward MS1 Detector
HR² Imaging versus Unbunched Imaging

Chemical identification and high lateral resolution together.

Unbunched

Δl = 60 nm

Ultimate lateral resolution but with little or no chemical information.

Si⁺ (m/z 28); 30 µm FOV

C₂H₄N m/ΔmFWHM = 7,960

HR² is the most utilized and practical analysis mode.

C₂H₄ m/ΔmFWHM = 800
High Resolving Power & Full Tandem MS Resolution

HR² Mode Imaging: (best mass resolution, m/Δm > 10,000)

Unbunched Mode Imaging: (best lateral resolution, Δℓ < 70 nm)

Crystal violet test data
What is the Composition at \(-m/z\ 167\)?

Peak compositions are not confidently identified from the TOF-SIMS (MS\(^1\)) data alone.